--> https://valeoai.github.io/ <--
by Loïck Chambon (loickch.github.io), @paulcouairon.bsky.social, @eloizablocki.bsky.social, @alexandreboulch.bsky.social, @nicolasthome.bsky.social, @matthieucord.bsky.social
Collab with @mlia-isir.bsky.social
by Loïck Chambon (loickch.github.io), @paulcouairon.bsky.social, @eloizablocki.bsky.social, @alexandreboulch.bsky.social, @nicolasthome.bsky.social, @matthieucord.bsky.social
Collab with @mlia-isir.bsky.social
The repo contains:
✅ Pretrained model
✅ Example notebooks
✅ Evaluation and training codes
Check it out & ⭐ the repo: github.com/valeoai/NAF
The repo contains:
✅ Pretrained model
✅ Example notebooks
✅ Evaluation and training codes
Check it out & ⭐ the repo: github.com/valeoai/NAF
If you are using bilinear interpolation anywhere, NAF acts as a strict drop-in replacement.
Just swap it in. No retraining required. It’s literally free points for your metrics.📈
If you are using bilinear interpolation anywhere, NAF acts as a strict drop-in replacement.
Just swap it in. No retraining required. It’s literally free points for your metrics.📈
Not just zero-shot feature upsampling: it shines on image restoration too, delivering sharp, high-quality results across multiple applications. 🖼️
Not just zero-shot feature upsampling: it shines on image restoration too, delivering sharp, high-quality results across multiple applications. 🖼️
Under the hood, NAF learns an Inverse Discrete Fourier Transform: revealing a link between feature upsampling, classical filtering, and Fourier theory.
✨ Feature upsampling is no longer a black box
Under the hood, NAF learns an Inverse Discrete Fourier Transform: revealing a link between feature upsampling, classical filtering, and Fourier theory.
✨ Feature upsampling is no longer a black box
🧬 Lightweight image encoder (600k params)
🔁 Rotary Position Embeddings (RoPE)
🔍 Cross-Scale Neighborhood Attention
First fully learnable VFM-agnostic reweighting!✅
🧬 Lightweight image encoder (600k params)
🔁 Rotary Position Embeddings (RoPE)
🔍 Cross-Scale Neighborhood Attention
First fully learnable VFM-agnostic reweighting!✅
It beats both VFM-specific upsamplers (FeatUp, JAFAR) and VFM-agnostic methods (JBU, AnyUp) across downstream tasks:
- 🥇Semantic Segmentation
- 🥇Depth Estimation
- 🥇Open-Vocabulary
- 🥇Video Propagation, etc.
Even for massive models like: DINOv3-7B !
It beats both VFM-specific upsamplers (FeatUp, JAFAR) and VFM-agnostic methods (JBU, AnyUp) across downstream tasks:
- 🥇Semantic Segmentation
- 🥇Depth Estimation
- 🥇Open-Vocabulary
- 🥇Video Propagation, etc.
Even for massive models like: DINOv3-7B !
by: @bjoernmichele.bsky.social @alexandreboulch.bsky.social @gillespuy.bsky.social @tuanhungvu.bsky.social, R. Marlet, @ncourty.bsky.social
📄 bsky.app/profile/bjoe...
Code: ✅
We'll present MuDDoS at BMVC: a method that boosts multimodal distillation for 3D semantic segmentation under domain shift.
📍 BMVC
🕚 Monday, Poster Session 1: Multimodal Learning (11:00–12:30)
📌 Hadfield Hall #859
by: @bjoernmichele.bsky.social @alexandreboulch.bsky.social @gillespuy.bsky.social @tuanhungvu.bsky.social, R. Marlet, @ncourty.bsky.social
📄 bsky.app/profile/bjoe...
Code: ✅
by: S de Moreau, Y. Almehio, @abursuc.bsky.social, H. El-Idrissi, B. Stanciulescu, @fabienmoutarde
tl;dr: a light enhancement method for better depth estimation in low-light conditions
📄 arxiv.org/abs/2409.08031
Code: ✅
by: S de Moreau, Y. Almehio, @abursuc.bsky.social, H. El-Idrissi, B. Stanciulescu, @fabienmoutarde
tl;dr: a light enhancement method for better depth estimation in low-light conditions
📄 arxiv.org/abs/2409.08031
Code: ✅
by: E. Kirby, @mickaelchen.bsky.social, R. Marlet, N. Samet
tl;dr: a diffusion-based method producing lidar point clouds of dataset objects, with an extensive control of the generation
📄 arxiv.org/abs/2412.07385
Code: ✅
by: E. Kirby, @mickaelchen.bsky.social, R. Marlet, N. Samet
tl;dr: a diffusion-based method producing lidar point clouds of dataset objects, with an extensive control of the generation
📄 arxiv.org/abs/2412.07385
Code: ✅
tl;dr: a new method for understanding and controlling how MLLMs adapt during fine-tuning
by: P. Khayatan, M. Shukor, J. Parekh, A. Dapogny, @matthieucord.bsky.social
📄: arxiv.org/abs/2501.03012
tl;dr: a new method for understanding and controlling how MLLMs adapt during fine-tuning
by: P. Khayatan, M. Shukor, J. Parekh, A. Dapogny, @matthieucord.bsky.social
📄: arxiv.org/abs/2501.03012
tl;dr: a simple trick to boost open-vocabulary semantic segmentation by identifying class expert prompt templates
by: Y. Benigmim, M. Fahes, @tuanhungvu.bsky.social, @abursuc.bsky.social, R. de Charette.
📄: arxiv.org/abs/2504.10487
tl;dr: a simple trick to boost open-vocabulary semantic segmentation by identifying class expert prompt templates
by: Y. Benigmim, M. Fahes, @tuanhungvu.bsky.social, @abursuc.bsky.social, R. de Charette.
📄: arxiv.org/abs/2504.10487
tl;dr: a self-supervised learning of temporally consistent representations from video w/ motion cues
by: M. Salehi, S. Venkataramanan, I. Simion, E. Gavves, @cgmsnoek.bsky.social, Y. Asano
📄: arxiv.org/abs/2506.08694
tl;dr: a self-supervised learning of temporally consistent representations from video w/ motion cues
by: M. Salehi, S. Venkataramanan, I. Simion, E. Gavves, @cgmsnoek.bsky.social, Y. Asano
📄: arxiv.org/abs/2506.08694
tl;dr: a module for 3D occupancy learning that enforces 2D-3D consistency through differentiable Gaussian rendering
by: L. Chambon, @eloizablocki.bsky.social, @alexandreboulch.bsky.social, M. Chen, M. Cord
📄: arxiv.org/abs/2502.05040
tl;dr: a module for 3D occupancy learning that enforces 2D-3D consistency through differentiable Gaussian rendering
by: L. Chambon, @eloizablocki.bsky.social, @alexandreboulch.bsky.social, M. Chen, M. Cord
📄: arxiv.org/abs/2502.05040
@ssirko.bsky.social, @vobeckya.bsky.social, @abursuc.bsky.social , N. Thome, @spyrosgidaris.bsky.social
📄: arxiv.org/abs/2506.18463
bsky.app/profile/ssir...
Introducing DIP: unsupervised post-training that enhances dense features in pretrained ViTs for dense in-context scene understanding
Below: Low-shot in-context semantic segmentation examples. DIP features outperform DINOv2!
@ssirko.bsky.social, @vobeckya.bsky.social, @abursuc.bsky.social , N. Thome, @spyrosgidaris.bsky.social
📄: arxiv.org/abs/2506.18463
bsky.app/profile/ssir...