Bartłomiej Baranowski, @s-esposito.bsky.social, @pgschossmann.bsky.social, @apchen.bsky.social, @andreasgeiger.bsky.social
arxiv.org/abs/2511.06810
Bartłomiej Baranowski, @s-esposito.bsky.social, @pgschossmann.bsky.social, @apchen.bsky.social, @andreasgeiger.bsky.social
arxiv.org/abs/2511.06810
www.youtube.com/watch?v=eamc...
www.youtube.com/watch?v=eamc...
Maria Parelli, Michael Oechsle, Michael Niemeyer ... Andreas Geiger
arxiv.org/abs/2509.00269
Trending on www.scholar-inbox.com
Maria Parelli, Michael Oechsle, Michael Niemeyer ... Andreas Geiger
arxiv.org/abs/2509.00269
Trending on www.scholar-inbox.com
📄 Paper: www.scholar-inbox.com/papers/He202...
arxiv.org/pdf/2508.13148
💻 Code: github.com/autonomousvi...
🌐 Project Page: cli212.github.io/MDPO/
📄 Paper: www.scholar-inbox.com/papers/He202...
arxiv.org/pdf/2508.13148
💻 Code: github.com/autonomousvi...
🌐 Project Page: cli212.github.io/MDPO/
Yuxi Xiao, @jianyuanwang.bsky.social, Nan Xue, @nikkar.bsky.social, Yuri Makarov, Bingyi Kang, Xing Zhu, Hujun Bao, Yujun Shen, Xiaowei Zhou
tl;dr: DAv2+VGGT->depths & poses->iterative cross-attention-based optimizer
arxiv.org/abs/2507.12462
Yuxi Xiao, @jianyuanwang.bsky.social, Nan Xue, @nikkar.bsky.social, Yuri Makarov, Bingyi Kang, Xing Zhu, Hujun Bao, Yujun Shen, Xiaowei Zhou
tl;dr: DAv2+VGGT->depths & poses->iterative cross-attention-based optimizer
arxiv.org/abs/2507.12462
youtube.com/watch?v=_god...
youtube.com/watch?v=_god...
www.scholar-inbox.com/conference/i... ICML 2025 Planner
www.scholar-inbox.com/conference/i... ICML 2025 Planner
The repository contains the first public code base for training RL agents with the CARLA leaderboard 2.0 and nuPlan.
github.com/autonomousvi...
The repository contains the first public code base for training RL agents with the CARLA leaderboard 2.0 and nuPlan.
github.com/autonomousvi...
Self-supervised learning from video does scale! In our latest work, we scaled masked auto-encoding models to 22B params, boosting performance on pose estimation, tracking & more.
Paper: arxiv.org/abs/2412.15212
Code & models: github.com/google-deepmind/representations4d
Self-supervised learning from video does scale! In our latest work, we scaled masked auto-encoding models to 22B params, boosting performance on pose estimation, tracking & more.
Paper: arxiv.org/abs/2412.15212
Code & models: github.com/google-deepmind/representations4d
Zeyi Liu, Shuang Li, Eric Cousineau ... Shuran Song
arxiv.org/abs/2507.01099
Trending on www.scholar-inbox.com
Zeyi Liu, Shuang Li, Eric Cousineau ... Shuran Song
arxiv.org/abs/2507.01099
Trending on www.scholar-inbox.com
Ruicheng Wang, Sicheng Xu, Yue Dong, Yu Deng, Jianfeng Xiang, Zelong Lv, Guangzhong Sun, Xin Tong, Jiaolong Yang
arxiv.org/abs/2507.02546
Ruicheng Wang, Sicheng Xu, Yue Dong, Yu Deng, Jianfeng Xiang, Zelong Lv, Guangzhong Sun, Xin Tong, Jiaolong Yang
arxiv.org/abs/2507.02546
🇩🇪 🇬🇷 🇮🇹 🇮🇳 🇷🇺 🇺🇦 🇨🇳 🇷🇸 🇯🇵 🇧🇪 🇺🇸 🇰🇷 🇹🇷
🇩🇪 🇬🇷 🇮🇹 🇮🇳 🇷🇺 🇺🇦 🇨🇳 🇷🇸 🇯🇵 🇧🇪 🇺🇸 🇰🇷 🇹🇷
Until next time. @deblinaml.bsky.social, @jbhaurum.bsky.social, @csprofkgd.bsky.social signing off.
Until next time. @deblinaml.bsky.social, @jbhaurum.bsky.social, @csprofkgd.bsky.social signing off.
@cvprconference.bsky.social
Can meshes capture fuzzy geometry? Volumetric Surfaces uses adaptive textured shells to model hair, fur without the splatting / volume overhead. It’s fast, looks great, and runs in real time even on budget phones.
🔗 autonomousvision.github.io/volsurfs/
📄 arxiv.org/pdf/2409.02482
@cvprconference.bsky.social
Exciting keynotes on state-of-the-art NVS & 3D understanding from Andrea Vedaldi, Cordelia Schmid, Gordon Wetzstein, Katja Schwarz, Qianqian Wang, and leading methods on the benchmark!
kaldir.vc.in.tum.de/scannetpp/cv...
Exciting keynotes on state-of-the-art NVS & 3D understanding from Andrea Vedaldi, Cordelia Schmid, Gordon Wetzstein, Katja Schwarz, Qianqian Wang, and leading methods on the benchmark!
kaldir.vc.in.tum.de/scannetpp/cv...
We'll have an incredible lineup of speakers discussing the frontier of 3D computer vision techniques for dynamic world modeling across spatial AI, robotics, astrophysics, and more.
4dvisionworkshop.github.io
We'll have an incredible lineup of speakers discussing the frontier of 3D computer vision techniques for dynamic world modeling across spatial AI, robotics, astrophysics, and more.
4dvisionworkshop.github.io
Have a question you want answered by a panel of experts in the field? Send it to us via: tinyurl.com/bdddf36f
Have a question you want answered by a panel of experts in the field? Send it to us via: tinyurl.com/bdddf36f
DepthSplat is a feed-forward model that achieves high-quality Gaussian reconstruction and view synthesis in just 0.6 seconds.
Looking forward to great conversations at the conference!
🔗 haofeixu.github.io/depthsplat/
DepthSplat is a feed-forward model that achieves high-quality Gaussian reconstruction and view synthesis in just 0.6 seconds.
Looking forward to great conversations at the conference!