http://dmytro.ai
SAM 3D Team et al?
tl;dr: in title. 8-stage training, dataset, human labeling. Do not read tl;dr, read whole paper
arxiv.org/abs/2511.16624
SAM 3D Team et al?
tl;dr: in title. 8-stage training, dataset, human labeling. Do not read tl;dr, read whole paper
arxiv.org/abs/2511.16624
Weixun Luo, Ranran Huang, Junpeng Jing, Krystian Mikolajczyk
tl;dr: in title + dataset.
arxiv.org/abs/2511.16567
Weixun Luo, Ranran Huang, Junpeng Jing, Krystian Mikolajczyk
tl;dr: in title + dataset.
arxiv.org/abs/2511.16567
Zhaoning Wang, Xinyue Wei, Ruoxi Shi, Xiaoshuai Zhang, Hao Su, Minghua Liu
arxiv.org/abs/2511.16659
tl;dr: in-title, start from learning-based split -> algorithmic finish
Zhaoning Wang, Xinyue Wei, Ruoxi Shi, Xiaoshuai Zhang, Hao Su, Minghua Liu
arxiv.org/abs/2511.16659
tl;dr: in-title, start from learning-based split -> algorithmic finish
@parskatt.bsky.social et 11 al.
tl;dr: in title.
Predict covariance per-pixel, more datasets, use DINOv3, adjust architecture.
arxiv.org/abs/2511.15706
@parskatt.bsky.social et 11 al.
tl;dr: in title.
Predict covariance per-pixel, more datasets, use DINOv3, adjust architecture.
arxiv.org/abs/2511.15706
Architecture and prediction target ablations
3/3
Architecture and prediction target ablations
3/3
Synthetic teacher == DAv2-like model to process real world datasets like MegaDepth, and get them dense and sharp depth.
Also great section of dataset issues in Appendix
Synthetic teacher == DAv2-like model to process real world datasets like MegaDepth, and get them dense and sharp depth.
Also great section of dataset issues in Appendix
Haotong Lin, Sili Chen, Junhao Liew, Donny Y. Chen, Zhenyu Li, Guang Shi, Jiashi Feng, Bingyi Kang
tl;dr: DINOv2+reshape for multiview,
joint DPT, synth teacher. Depth-ray output.
Simpler VGGT.
arxiv.org/abs/2511.10647
Haotong Lin, Sili Chen, Junhao Liew, Donny Y. Chen, Zhenyu Li, Guang Shi, Jiashi Feng, Bingyi Kang
tl;dr: DINOv2+reshape for multiview,
joint DPT, synth teacher. Depth-ray output.
Simpler VGGT.
arxiv.org/abs/2511.10647
My favorites:
1) CAD representation
2) synthetic data to help city-scale reconstruction
3) trends in 3D vision
4) visual chain-of-thoughts?
My favorites:
1) CAD representation
2) synthetic data to help city-scale reconstruction
3) trends in 3D vision
4) visual chain-of-thoughts?
Common, exclude them from the char limit, or whatever.
On twitter, when authors are on platform, it means MORE space. Here is means LESS space
It is easy to fit the paper name + authors (handles) + tl;dr + arXiv link on twitter, but almost impossible here :(
Common, exclude them from the char limit, or whatever.
On twitter, when authors are on platform, it means MORE space. Here is means LESS space
It is easy to fit the paper name + authors (handles) + tl;dr + arXiv link on twitter, but almost impossible here :(
Philipp Lindenberger
@pesarlin.bsky.social @janhosang.bsky.social Matteo Balice @marcpollefeys.bsky.social Simon Lynen, Eduard Trulls
tl;dr: combine ground+aerial to get cell-prototype. Acc@ 42Gb = ground [email protected]
arxiv.org/abs/2510.26795
Philipp Lindenberger
@pesarlin.bsky.social @janhosang.bsky.social Matteo Balice @marcpollefeys.bsky.social Simon Lynen, Eduard Trulls
tl;dr: combine ground+aerial to get cell-prototype. Acc@ 42Gb = ground [email protected]
arxiv.org/abs/2510.26795
2/2
2/2
@billpsomas.bsky.social George Retsinas @nikos-efth.bsky.social Panagiotis Filntisis,Yannis Avrithis, Petros Maragos, Ondrej Chum, @gtolias.bsky.social
tl;dr: condition-based retrieval (+dataset) - old photo/sunset/night/aerial/model arxiv.org/abs/2510.25387
@billpsomas.bsky.social George Retsinas @nikos-efth.bsky.social Panagiotis Filntisis,Yannis Avrithis, Petros Maragos, Ondrej Chum, @gtolias.bsky.social
tl;dr: condition-based retrieval (+dataset) - old photo/sunset/night/aerial/model arxiv.org/abs/2510.25387
The issue though, is that some areas are over-represented, whereas others, also important, but textureless, have no voice.
The issue though, is that some areas are over-represented, whereas others, also important, but textureless, have no voice.
Aidyn Ubingazhibov, Rémi Pautrat, Iago Suárez,
Shaohui Liu, @marcpollefeys.bsky.social , Viktor Larsson
tl;dr: Better and faster gluestick with line attention.
arxiv.org/abs/2510.16438
Aidyn Ubingazhibov, Rémi Pautrat, Iago Suárez,
Shaohui Liu, @marcpollefeys.bsky.social , Viktor Larsson
tl;dr: Better and faster gluestick with line attention.
arxiv.org/abs/2510.16438