ayu
banner
ayutake.bsky.social
ayu
@ayutake.bsky.social
競プロ/AtCoder(C# A青H水)
https://atcoder.jp/users/ayutake

アイコン:れお様(https://www.pixiv.net/artworks/130549564)
F k=1,2,…,Nについて「手順2でb=kとしたとき、明るさがk番目の星を必ず含む撮り方」を考えると、各kについて重複なく数えられる
数え上げはkの昇順にセグ木で

G 形式的冪級数で考えると1+x+x^2+…=1/(1-x^A[i])の積になって、分母は畳み込みで計算できて…から進まず(そもそも畳み込みが未実装)
December 13, 2025 at 1:47 PM
試しに投げてみたらTLEもWAも出たから投げなくてよかった〜(よくはない)
November 29, 2025 at 2:43 PM
F A[i]を1122文字列の|T|/2文字目に使うとすると、ありうる1122文字列の個数は、1〜(i-1)文字目のA[i]の個数をl、(i+1)〜N文字目のA[i]+1の個数をrとして、k=1,2,...,min(l+1,r)についてComb(l,k-1)*Comb(r,k)の総和をとったもの
実はこれはComb(l+r,l+1)になる(Comb(l,k-1)=Comb(l,l+1-k)なので、(l+r)個から(l+1)個を選ぶとき、右のr個からk個、左のl個から残りの(l+1-k)個を選ぶと考える)
November 22, 2025 at 2:02 PM
E 大きい方(N*M)から順に埋めていくと、行と列それぞれで「もう後は何埋めてもいいっすよ」なタイミングが訪れるので、行と列の両方から「埋めてもいいっすよ」と言われたマスをQueueとかに詰め込んで順に使っていく
ただしXとYに含まれる数は埋めるべき行または列(またはその両方)が決まっているので、それに従って埋めていく
November 22, 2025 at 2:02 PM
金曜仕事終わりのボーッとしてる頭では非常に苦しかった
November 21, 2025 at 10:14 AM
B 中央値を消していくから、極端に小さい数や大きい数は操作タイミング関係なく最後まで残るのでは?と考えると、結局最後に残るのはAとBに含まれる数のうち小さい方N/2個と大きい方N/2個ではないかと予想できる(未証明)
これを信じて「小さい方N/2個と大きい方N/2個の総和を求めよ」という問題をセグ木をなんやかんやして解くと通った
C よくわかりませんでした(途中放棄)
November 16, 2025 at 2:07 PM
F bitDPでやろうとしたけど途中経過の管理が出来ないので無理だった
G 式変形したら何か良い形になるんだろうかと思いつつ、結果的に畳み込みだったら未履修だから困る→解説を見る→そうですか
November 15, 2025 at 1:56 PM
Dial's algorithmをベースにして01BFSに使いやすいQueueを準備した
atcoder.jp/contests/abc...
November 9, 2025 at 2:54 PM